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1 Abstract

Earthquakes are the culmination of a friction-controlled slip instability on natural faults. The

weakening of the interface during the phase of accelerating slip, termed earthquake nucleation, is

determined by the frictional properties of the sliding surface. In the absence of in situ constraints on

the physics of friction on natural faults, laboratory experiments have guided the design of relevant

constitutive equations. Rate and state friction is the most widely used representative of this class

of friction theories.

The formulation of rate and state friction requires an equation for the time evolution of ‘state’, a

proxy for the real area and quality of contacts bridging the frictional interface. However, the most

widely used Aging and Slip state evolution laws are both deficient in their ability to explain the full

range of laboratory experiments. It has long been claimed that the slip-dependent evolution of the

Slip law better models velocity step experiments, while the time-dependent evolution of the Aging

law better models slide-hold-slide experiments. To the extent that large velocity decreases and

holds access similar parts of parameter space, this accepted view is not internally consistent. We

re-analyze the slide-hold-slide experiments of Beeler et al. [1994], long considered to have established

that healing during the holds is time-dependent (Aging law) rather than slip dependent (Slip law).

We show analytically and by Bayesian inversion that in fact the continual and stiffness-dependent

stress relaxation during the holds is modeled very well by the Slip law, but is incompatible with

the Aging law with constant rate-state parameters. Additionally, although neither law provides a

good fit to both the stress relaxation during the holds and the stress peaks following the resides,

the Slip-law fit is superior.

Given the evidence for the increase in contact area with time during stationary holds, but the

apparent lack of time-dependent strengthening during the holds in slide-hold-slide experiments, we

used ultrasonic monitoring of the sliding interface to provide additional information concerning

fault ‘state’. We carried out velocity step increases and decreases of 1–3 orders of magnitude, and

slide-hold-reslide experiments with holds of up to 5000s duration, at slip speeds of 3–100 µm/s.

The interface was probed with ultrasonic shear waves of frequency 0.5 MHz at 1000 shots per

second, recorded at 25 MHz. Mode conversion of S- to P-waves allowed us to measure changes

in both P- and S-wave transmissivity and travel time during the experiments. As expected, we

find systematic increases in transmissivity and decreases in travel time with decreases in slip speed

from steady state, and vice-versa for increases in slip speed. For purely elastic contacts across

the interface, percentage changes in P- and S-wave transmissivity are expected to be proportional.

That we see larger percentage changes in S-wave than in P-wave transmissivity is indicative of

inelastic deformation at these contacts at ultrasonic frequencies, and seems qualitatively consistent

with differential slip at the margins of contacts produced by wave-induced changes in shear stress.

2 Introduction

For a fault to fail repeatedly during successive seismic cycles, it is necessary for it to strengthen

(heal) during the interseismic period. Friction experiments on both bare rock and gouge have shown
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that the slip interface strengthens during periods of little or no sliding called holds [Dieterich,

1972, Beeler et al., 1994, Dieterich and Kilgore, 1994, Nakatani and Mochizuki, 1996, Marone,

1998, Berthoud et al., 1999, Bureau et al., 2002, Marone and Saffer, 2015]. This strengthening

is evidenced by the fact that the peak static friction upon resliding is an increasing function of

the duration of the preceding hold [Beeler et al., 1994, Marone, 1998, Berthoud et al., 1999]. On

initially bare rock surfaces, such frictional strengthening has two robust characteristics: (1) The

static friction peaks increase linearly with the logarithm of the hold time for holds longer than a

threshold time of order seconds [Dieterich, 1972, Beeler et al., 1994, Marone, 1998, Berthoud et al.,

1999]; (2) This constant rate of healing/strengthening is independent of the stiffness of the testing

apparatus [Beeler et al., 1994] (by ‘rate of healing/strengthening’ we mean the rate of increase in

static friction with log hold time, as evidenced by the peak stress following a reslide).

Observation (1) is not limited to bare rock surfaces; such log linear healing with hold time has

been reported for a wide range of materials, e.g., simulated gouge [Karner and Marone, 1998,

2001], steel [Dokos, 1946], PMMA [Berthoud et al., 1999], and paper [Heslot et al., 1994]. It is

noteworthy that the rates of healing across these materials are remarkably similar, ∼ 10−2 per

decade of hold duration. This points to a robust and (perhaps) material-independent physical or

chemical mechanism governing frictional healing [Berthoud et al., 1999, Bureau et al., 2002]. Since

different stiffnesses lead to different amounts of slip during the holds, observation (2) was used

by Beeler et al. [1994]] to infer that this mechanism is dominantly time dependent, i.e., frictional

interfaces heal even at rest as the logarithm of the hold time. Such an inference is consistent with

observations of time-dependent growth of the size of microcontacts bridging stationary interfaces,

as revealed by direct optical measurements in Lucite acrylic and soda glass [Dieterich and Kilgore,

1994]. Furthermore, observations of continued increase in static friction peaks with hold duration

even at near-zero shear stresses (thus ensuring near-zero slip) for a variety of materials, including

granite, also lends support to the suggestion that slip might not be necessary for frictional healing

[Nakatani and Mochizuki, 1996, Bureau et al., 2002]. All of these lines of evidence seem to suggest

that time-dependent healing is a desirable property in constitutive relations of fault friction.

The most widely used constitutive relations for fault friction are the laboratory-derived rate-and-

state friction (RSF) equations. Robust laboratory observations have established the dependence of

friction on slip rate and ‘state’ (some measure of the quality and/or quantity of true contact area).

But a single mathematical description of the evolution of the state variable that agrees with the

full range of laboratory friction data remains elusive. This is due at least in part to the inherent

problems in directly monitoring the contact-scale mechanics of slip interfaces in rocks which, in turn,

has resulted in the lack of experimental constraints to help guide our theoretical understanding of

‘state’. Within the RSF framework there are two end-member views of how frictional state evolves:

(a) the Slip law [Ruina, 1983], which allows state to evolve only with slip, and (b) the Aging law

[Dieterich, 1978, Ruina, 1983], which allows state to evolve even without slip, purely as a function

of time. Beeler et al. [1994] used observation (2) above, and numerical simulations, to conclude

that their data supported Aging law style time-dependent healing. Since typical laboratory holds

subject the interface to rates of sliding many orders of magnitude smaller than the steady state

sliding speed prior to the hold, a corollary of this conclusion is that the Aging law is the appropriate

friction constitutive description at such small slip rates.

However, it has long been recognized that velocity-step experiments are consistently better ex-
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plained by the Slip law than by the Aging law. Bhattacharya and Rubin [2014] and Bhattacharya

et al. [2015] recently extended these results to sequences of 2–3-order velocity step increases and de-

creases on simulated gouge, which rapidly imposed slip rates orders of magnitude larger or smaller

than the preceding steady state rate on the sliding interface. Given that large velocity step de-

creases also access sliding regimes which promote frictional healing (brought about by the rapid

deceleration from steady state sliding), it seems inconsistent to simultaneously claim that (1) fault

healing in rock is primarily time dependent and (2) large velocity decreases are well modeled by

the Slip law and not the Aging law.

As part of this work we investigated this inconsistency by reanalyzing the data of Beeler et al.

[1994]. We focused not only on the static friction peaks but also on the stress relaxation during the

holds. We carried out detailed nonlinear inversions on the initially bare rock data from Beeler et al.

[1994] to examine the Aging and Slip law fits to the stress relaxation during holds both in isolation

and in conjunction with the evolution of static friction peaks with hold time. Additionally, we used

two other laws – a Slip/Aging hybrid evolution law, and a recently proposed shear stress-dependent

evolution law – both of which can be tuned to transition between Aging and Slip law behaviors to

check if the data are better explained by a (particular) combination of Aging and Slip rather than

Aging or Slip alone. We compared the properties of these fits with analytical predictions of the

frictional response to long holds under the different formulations of RSF considered here.

Our results reveal that stiffness independence of the healing rate is not sufficient to rule out the

Slip law; in fact, it is possible to find Slip law parameters that fit the peak stress data as well as the

Aging law does. Additionally, we point out that, vis-a-vis the Aging versus Slip argument, the more

diagnostic (and robust) feature of the Beeler et al. [1994] data is the strongly stiffness dependent

rate of stress relaxation during holds, provided we consider the RSF parameters to be constant.

Using both analytical and inversion results, we show that such data are consistent with the Slip law

and, importantly, are sufficient to rule out the Aging law with constant RSF parameters. To relax

this constraint, some of our inversions also introduced velocity-dependent RSF parameters designed

to add stiffness sensitivity to the otherwise stiffness-independent rates of stress relaxation under the

Aging law [Bhattacharya et al., 2017]. But the specific formulations of velocity dependence chosen

in that study seem to not help the Aging law improve its fits to the holds. Finally, when fitting

both peak stresses and the stress minima at the end of holds together, all our inversions, including

the ones with nonconstant RSF parameters, show that the Slip law fits the slide-hold-slide data

consistently better than the Aging law. We also ran all of these inversions with two alternative

state evolution prescriptions – a stress-dependent law and an Aging-Slip hybrid – both of which

replicated the respective best Slip law fits despite the freedom of an additional tunable parameter.

3 Rate-and-state background

RSF describes the frictional strength of an interface as a function of two variables: the sliding rate,

V , and the state, θ, a proxy (in units of time for the state evolution formulations we have chosen)

for the strength of the asperities in contact across the sliding interface at a reference slip speed,

often considered to scale with the true area of contact [Linker and Dieterich, 1992, Baumberger

and Caroli, 2006]. These variables are related by two coupled equations. The first of these, called
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the friction law, describes the rate and state dependence of frictional strength:

τ

σ
= µ(V, θ) = µ∗ + a ln

V

V∗
+ b ln

θ

θ∗
, (1)

where τ is frictional strength, σ is normal stress, µ is the “rate-and-state-dependent” friction

coefficient, a is the “direct effect” parameter accounting for the variations in frictional strength due

to changes in slip rate, and b is the “evolution effect” parameter which determines the change in

friction due to evolution of state. In general, at not very high temperatures, a and b are constants of

the order of 0.01, but they can vary by as much as an order of magnitude with varying temperature

and moisture content [Blanpied et al., 1998]. The other parameters µ∗, V∗, and θ∗ are the values

of friction coefficient, slip rate, and state at an arbitrary reference steady state. The system of

equations is closed with an evolution equation for θ. The two most widely used forms are

Aging (Dieterich) law: θ̇ = 1− V θ

Dc
(2)

Slip (Ruina) law: θ̇ = −V θ
Dc

ln
V θ

Dc
(3)

where the overdot denotes the time derivative and Dc is a characteristic slip scale for state evolution

[Dieterich, 1978, Ruina, 1983]. Equation (2) is often referred to as the Aging law, because state

increases linearly with time for stationary contacts. Equation (3) is referred to as the Slip law, as

state evolution occurs only for slipping contacts (lim(V→0) θ̇ = 0). At steady state sliding (θ̇ = 0),

both laws yield V θ/Dc = 1. We refer to V θ/Dc > 1 and V θ/Dc < 1 as being “above” and “below”

steady state, respectively; we use the phrase “far from steady state” to imply V θ/Dc significantly

different from 1.

Given that at steady state V θ/Dc = 1, equation (1) leads to the following expression for the change

in frictional strength between two steady states at velocities V2 and V1:

∆τ

σ
= (a− b) ln

V2
V1

. (4)

For (a − b) < 0 the sliding surface is steady-state velocity weakening and can undergo velocity

instabilities when the sliding is perturbed from steady state. For (a− b) > 0 (steady-state velocity

strengthening) such instabilities are not possible.

3.1 Implications of Velocity Step Tests

One robust observation from large velocity steps (of ∼ 1− 3 orders of magnitude) on both initially

bare rock surfaces and synthetic gouge is that the evolution of frictional strength following the

rapid extremum occurs over a quasi-constant slip scale, independent of the magnitude or sign of

the step [Ruina, 1980, 1983, Tullis and Weeks, 1986, Bhattacharya et al., 2015]. Consistent with

such data, the Slip law predicts an exponential approach to steady state over a characteristic slip

scale Dc following a velocity step of arbitrary size or sign [Rice, 1993, Nakatani, 2001, Ampuero

and Rubin, 2008].
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In contrast, the evolution of frictional strength under the Aging law following a large velocity

step occurs over slip scales which are functions of both the magnitude and sign of the step. Such

asymmetry is fundamentally tied to the relative amplitude of the two terms on the right side

of equation (2). For a large and sudden velocity increase, the surface is far above steady state

(V θ/Dc � 1) and one can neglect the “1” in equation (2). Integrating the resulting equations

under the assumption of constant slip speed and plugging the result into (1) leads to linear slip

weakening with slope bσ/Dc. That the rate of slip weakening is independent of the size of the

velocity step implies that the evolution of frictional strength to steady state occurs over length

scales which increase with the size of the jump [Ruina, 1980, Nakatani, 2001, Rubin and Ampuero,

2005]. On the other hand, for a velocity step decrease large and rapid enough to instantaneously

satisfy V θ/Dc � 1, Aging law state evolution predicts θ̇ ∼ 1; i.e., there is no slip scale for state

evolution. In this limit, the post-step increase in state is just time elapsed since the velocity step,

and significant state evolution occurs over slip distances δ � Dc [Ampuero and Rubin, 2008]. As

mentioned above, such asymmetry in the frictional response between large velocity increases and

decreases is not supported by observations from velocity step experiments.

Large velocity step decreases and long holds are intimately connected in that they both access the

portion of the parameter space where V θ/Dc � 1, even though the slip rates at the end of long

holds are much lower. Therefore, it seems inconsistent that one of these types of experiments would

provide evidence for dominantly slip-dependent healing while the other for time dependence. It is

then reasonable to ask if the Aging law is capable of providing a reasonable fit to large velocity

decrease data alone. For ideal velocity step decreases, the expectation is that the Aging law slip-

strengthening length scale should decrease with increasing step size, while for the Slip law, one

would expect slip to evolve over the same characteristic length scale for all step sizes (Figure 1a).

Bhattacharya et al. [2015] reported some near-ideal 1–2-order velocity steps on simulated gouge

(data set p1060 therein), which clearly show that friction evolves over a constant length scale

following these large step decreases in slip rate, consistent with the Slip law (Figure 1b). In fact,

the Aging law clearly performs worse than the Slip law when constrained to fit the 1- and 2-order

step decreases alone (Figure 1c). It is also noteworthy that the Slip law parameters adopted to fit

the step decreases also fit the step increases very well. Therefore, the Aging law, and its prediction

that θ̇ ∼ 1 when V θ/Dc � 1, are not supported by laboratory velocity step data which access

sliding regimes far below steady state. It is also important to recognize that the Aging law’s

apparent success in explaining the peak stress upon reslides following laboratory holds originates

from the very ingredient that leads to its failure in fitting the velocity step decrease data: time-

dependent healing [Bhattacharya et al., 2017]. These observations provided the motivation for our

reexamination of the slide-hold-slide data set of Beeler et al. [1994].

3.2 Implications of Slide-Hold-Slide Tests

In a typical slide-hold-slide (SHS) test, the shear stress on an interface undergoing steady sliding at

a rate Vs/r is relaxed by bringing the load point abruptly to rest. After being held for some duration

thold, the load point is redriven at the prehold speed. This increases the stress until the slider is

slipping as fast as the load point. Beyond this peak friction, stress decays back to steady state

with continued sliding. The difference between peak stress and the future steady state (∆µpeak)

has traditionally been used as a measure of frictional healing/strengthening during the preceding
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Figure 1: (a) Numerical solution of the response of Aging (dashed lines) and Slip (solid lines) laws to velocity
step decreases of 1 (red), 2 (green), and 3 (blue) orders of magnitude. The simulations use the best fitting
Slip law parameters from Figure 1c and the appropriate stiffness 0.008 µm/s. Friction values are normalized
by minimum-to-residual stress change. Following the stress minimum, the Slip law curves for the different
orders of magnitude plot on the top of each other. (b) Change in friction as a function of slip for load point
velocity decreases of 1 and 2 orders of magnitude in simulated gouge [Bhattacharya et al., 2015]. The data
are scaled to the minimum-to-residual friction range as in Figure 1a. These large velocity steps carry the
surface far below steady state, yet the data for the 1 and 2 order of magnitude steps strengthen over the
same slip distance, as predicted by the Slip law in Figure 1a. (c) Aging and Slip law fits to the velocity step
data shown in Figure 1b. Only the velocity step decreases were fit with the 1- and 2-order decreases equally
weighted. We constrained a− b = −0.0002. Blue, Data; Ochre, Aging law; Red, Slip law. Numbers in black
denote load point displacement rate in µm/s.

hold (Figure 2).

Beeler et al. [1994] studied the evolution of ∆µpeak with thold in initially bare granite and quartzite

by carrying out a sequence of SHS tests with holds from ∼ 10−0.5 − 104.5s. This sequence of

holds was repeated under two different setups of the testing apparatus which resulted in effective

stiffnesses that differed by a factor of 30. Their data show that ∆µpeak increases as a linear function

of the logarithm of hold time such that the slope (i.e. the healing rate) is independent of stiffness

(Figure 2c). Beeler et al. [1994] argued, based on this observation and numerical simulations, that

the stiffness independence of the evolution of ∆µpeak supported continued strengthening of nearly

stationary interfaces with time as formulated by the Aging law. They further argued that the Slip

law predicts stiffness-dependent healing rates, since the amount of slip accrued during the hold,

and hence the concomitant state evolution, is stiffness dependent. We showed that some of these

conclusions are suspect, and that furthermore there are other properties of the data which provide

more reliable diagnostic constraints on the class of state evolution laws that we are considering,

provided a, b, and Dc are constants across the range of velocities accessed in the experiment.

It is first worth noting that the main purpose of these experiments was to determine the amount of
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Figure 2: (a) Shear stress evolution from the slide-hold-slides of Beeler et al. [1994]. The X axis is time,
scaled such that each phase of hold and slide/reslide has unit duration to aid in visualization. The holds span
100.5 − 104 s in thold. The red curve shows a slide-hold-slide sequence for the lower, natural stiffness setup
(kn = 0.0019µ/m, Vs/r = 1.0µm/s), the blue curve shows a sequence for the stiffer apparatus (ks = 0.055µ/m,
Vs/r = 0.32µm/s). (b) A 1000 s hold with the stiffer apparatus. The thold, ∆µpeak, and ∆µhold notation
wherever used in the text is as defined in this figure. Numbers in blue represent load point velocities in µm/s.
(c) Evolution of ∆µpeak (squares) and ∆µhold (circles) with thold for two sets of slide-hold-slide sequences
with the low (red) and high (blue) stiffness setups. The time evolution of these quantities is remarkably
reproducible from repeated experiments during the same experimental run.

frictional healing (increase in state) during the holds. The peak stress upon reslide was used as a

proxy for this healing only because there is no way to estimate ‘state’ at the end of the hold directly.

However, using peak stress for this purpose requires either negligible reduction of state between

the start of the reside and peak stress (when the slip speed equals the load point velocity), or at

least that (the logarithm of) this state reduction is independent of hold time, such that the slope

of the healing curve reflects the state increase during the hold. Regarding the latter possibility,

Beeler et al. [1994] claimed, and we proved under fairly non-restrictive conditions [Bhattacharya et

al., 2017], that for the Aging law the change in log(state) between the start of the reside and peak

stress is indeed independent of hold duration. However, Bhattacharya et al. [2017] further showed

that this property of the Aging law derives entirely from its prediction that well above steady state

the fault weakens linearly with slip, at a rate that is independent of V θ/Dc, a prediction that is

violated by all relevant experimental data. As a corollary, they showed numerically that for the

Slip law, there exists combinations of model parameters such that the stiffness-dependence of the

state increase during the hold is largely offset by the stiffness-dependence of the loss in state across

the reside, such that for a limited range of parameters the Slip law can fit the Beeler et al. [1994]

peak stress data as well as the Aging law can. Finally, that state might be reduced considerably

between the start of the reside and peak stress was suggested by the lucite experiments of Dieterich

and Kilgore [1994], who showed (their Figure 7) that there was significantly more loss of contact

area (transmitted light) between the end of the hold and the attainment of peak stress than would

be predicted by state evolution under the Aging or Slip laws. The stressing-rate dependence of the

Nagata law is one such mechanism by which this could occur.

For all these reasons we chose to model the stress relaxation during the hold as well as the peak
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Figure 3: Evolution of frictional strength under the Aging law during a long hold (∼ 3× 104 s) for different
values of normalized stiffness, kDc/a = 1 (blue), 10 (ochre), and 100 (green), and different values of b/a. (a)
Velocity weakening, b/a = 2; (b) Velocity neutral, b/a = 1; (c) Velocity strengthening, b/a = 0.5. The solid
lines show numerical solutions, corresponding dashed lines denote the analytical approximations to ∆µ/a
derived in section C1 of Bhattacharya et al. [2017]. A velocity-weakening Aging law predicts a constant
stress solution for long holds. Velocity-neutral and velocity-strengthening solutions show continual relaxation
of stress, but importantly, the rate of stress relaxation for long holds is stiffness independent. Note that the
experiments of Beeler et al. [1994] span the range from 0.3 to 1.0 . Vs/rthold/Dc . 3× 103 to 104 between
the high and normal stiffness holds respectively.

stress upon reslide when re-examining the Beeler et al. data. One of the most robust features

of these data is the continual decay of stress with log hold time, at a rate that is much larger

for the higher-stiffest testing apparatus. In fact, these features are much more consistent with

the predictions of the Slip law than the Aging law. From velocity-step tests during the same

experimental runs, we know that the granite and quartzite samples of Beeler et al. [1994] were

steady-state velocity weakening. For velocity-weakening materials, the Aging law predicts not a

continual decay of stress with log hold time, but decay to a constant value that depends upon

the stiffness of the testing apparatus (Fig. 3a). The cause is the same as that which gives rise

to a healing rate that is independent of stiffness – time-dependent hearing. The sliding surface

asymptotically approaches a constant slip distance because the fault is strengthening even as the

slip speed approaches zero. For a velocity-strengthening surface the stress continues to decay with

hold time (it must, because the surface remains below steady state as the velocity decreases, and

the definition of a velocity-strengthening surface is that the steady-state stress decreases as the

velocity decreases), but the rate of stress decay with log hold time is independent of the machine

stiffness (Fig. 3c). In contrast, the Slip law naturally gives rise to a continual stress decay with log

hold time that is greater for the higher stiffness apparatus, because the higher stiffness apparatus

produces less slip and less healing of the sliding surface (Fig. 4).

All of these attributes manifest themselves when fitting the data using the Markov Chain Monte

Carlo (MCMC) technique of Bhattacharya et al. [2015]. When fitting ∆µpeak alone, with (a − b)
constrained from velocity steps, the aging law can fit the the healing rate very well (Fig. 5a).

However, the stress decay during the holds is both too little (because the surface strengthens too

much) and asymptotically approaches a constant value. Relaxing the constraint on (a − b), the
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Figure 4: Stress relaxation under the Slip law during a long hold (∼ 105 s) for different values of the
normalized stiffness, kDc/a = 1 (blue), 10 (ochre), and 100 (green), and different values of b/a. (a) Velocity
weakening, b/a = 2, (b) velocity neutral, b/a = 1, and (c) velocity strengthening, b/a = 0.5. The solid color
lines are the numerically integrated values of ∆µ/a. Corresponding dashed lines denote the relevant analytical
approximations derived in section C2 of Bhattacharya et al. [2017]. In the small stiffness limit (dashed blue
lines), the velocity-weakening Slip law predicts a log(log(thold)) trajectory, while the velocity strengthening
trajectories are linear in log(thold). The large stiffness limit for all trajectories is ∆µ/a = ln(V/Vs/r) (dashed
red lines).

Aging law can recover the separation of ∆µpeak between the high- and low-stiffness apparatus, but

still fails to reproduce the observed stress decay during the holds (Fig. 5b). Figure 5b also shows

that with (a− b) unconstrained, the Slip law can reproduce the ∆µpeak values as well as the Aging

law can, although with a value of (a − b) (−0.0001) that is farther from the value determined

from the velocity steps (−0.0027) than is the value for the comparable Aging law fit (−0.0007). In

addition, the value of Dc adopted by the Slip law fit is farther from the expected value of 1− 2µm

than is the comparable value for the Aging law. For the Slip law, a small value allows more state

evolution between the onset of the reslide and peak stress for the lower stiffness setup, which offsets

the greater healing (because of more slip) for that lower stiffness setup.

When fitting the ∆µhold data only (Fig. 6), the Slip law does a better job both with (a − b)

constrained (left) and (a − b) unconstrained (right). With (a − b) unconstrained, the Aging law

achieves continual stress decay by making the surface velocity strengthening (a−b = +0.0033), but

even so the rate of decay for the longest holds is asymptotically the same for the high- and low-

stiffness setup, unlike the data but as predicted by our theoretical results. For the unconstrained

Slip law, the fit to the ∆µhold data is quite good, and additionally the fit to the ∆µpeak data is

much better than for the Aging law, with a velocity-weakening surface (a − b = −0.0003) and a

reasonable value of Dc.

When fitting both the ∆µpeak and the ∆µhold data, with (a − b) constrained both the Aging law

and the Slip law fits are poor (Fig. 7). With (a− b) unconstrained, the Slip law fit is superior and

is achieved with a value of (a − b) that, although it is velocity strengthening (a − b = +0.003), is

less strengthening than for the Aging law fit (a − b = +0.0047). The Aging law fit again has the

property that the rate of stress decay during the holds is asymptotically the same for the low- and
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Figure 5: Aging and Slip law fits to the time evolution of ∆µpeak in initially bare granite from Beeler et al.
[1994]. The red squares and circles are the low stiffness data, the corresponding blue symbols are the high
stiffness data. (a) Aging law fit (solid line) with a − b fixed at –0.0027. (b) Aging (solid line) and Slip law
(dashed line) fits without any constraint on a− b. Note that the Slip law fit to the time evolution of ∆µpeak

is as good as the Aging law with the healing rate being stiffness independent. However, for both the Aging
and Slip laws, the parameter choices that fit the peaks very well completely fail to match the corresponding
values of ∆µhold.

high-stiffness data.

From our results, we conclude that there is no evidence from the Beeler et al. [1994] data that

fault strengthening during long holds is time-dependent rather than slip-dependent. Fitting only

the ∆µpeak data with the Aging law is problematic (the Aging-law fit relies on a property that is

known to be violated by rock friction data), but even so the Slip law can fit the data about as

well as the Aging law. Fitting only the ∆µhold data, the Slip law fit is quite good with (a − b)
constrained and excellent with (a− b) unconstrained. In the latter case the fitting parameters have

the surface velocity-weakening with a reasonable value of Dc, and do a decent job of fitting the

∆µpeak data. Fitting all the data, both laws are deficient but the Slip law fit is superior. Finally,

given that these conclusions conflict with 2 decades of conventional wisdom regarding these data,

we tested two additional state evolution laws proposed by Kato and Tullis [2001] and Nagata et al.

[2012]. In each of these cases an additional parameter has been added (in the former case to the

Slip law; in the latter case to the Aging law) that allows the laws to toggle between Aging and

Slip depending upon the value of that parameter. We found that the MCMC inversions chose

values for these additional parameters that made the fits indistinguishable from the best Slip law

fit; that is, the inversions preferred the Slip law even given the choice of this additional parameter

[Bhattacharya et al., 2017, Figures 11 and 12).

One enduring appeal of Aging law state evolution is that time-dependent healing has a clear,

experimentally supported, physical picture in the limit of a truly stationary interface: the growth

of contact area with time [Dieterich and Kilgore, 1994], and it’s corollaries, normal closure of the

sliding interface and increase in acoustic transmissivity [Nagata et al., 2012, Kilgore et al., 2012].
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Figure 6: Aging and Slip law fits to the time evolution of ∆µhold in initially bare granite from Beeler et al.
[1994]. (a) Aging law (solid line) and Slip law (dashed line) fits with a− b fixed at –0.0027. (b) Fits without
any constraint on a− b. The Aging law fit is shown with solid lines and the Slip law with dashed lines.

However, the systematic lack of support for the Aging law from long laboratory holds, and its

clear refutation by large velocity step decreases, seems an equally compelling argument against

Aging law style time-dependent healing when the interface is sliding far below steady state. Our

results make it clear that the Aging law cannot explain the friction evolution observed during long

laboratory holds with constant RSF parameters. Therefore, one way to reconcile Aging law style

time-dependent healing with laboratory hold data is to consider physical mechanisms by which

RSF parameters could vary at the low slip rates accessed at the end of long holds. As a first

step, we restricted our attention to only those mechanisms which could be modeled through rate

dependencies of a and/or b [Boettcher et al., 2007, Rice et al., 2001].

Such an idea is not entirely without experimental motivation. For example, Marone and Saffer

[2015] pointed out that ∆µpeak and ∆µhold data from simulated gouge show systematic dependencies

on Vs/r which are not consistent with conventional RSF (with constant parameters) from the point of

view of dimensional analysis. One way to explain such systematic loading rate dependence is to add

a second velocity scale to traditional RSF models, a particular example of such a modification being

rate dependence of a and/or b. We explored two such choices of rate dependence [Bhattacharya

et al., 2017], both of which were motivated by the micromechanics of contacting asperities: (1) A

strain rate dependence of a (with constant b) derived from the micromechanics of contact creep; (2)

An effective rate dependence of a− b brought about by the inclusion of (conventionally neglected)

second-order terms in RSF. Both these modifications introduce (1) continual weakening of the

interface at progressively smaller slip rates even when the interface is velocity weakening at the

reference slip rate Vs/r, and (2) stiffness-dependent rates of stress relaxation during long holds, both
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Figure 7: Aging and Slip law fits to the time evolution of both ∆µpeak and ∆µhold in initially bare granite
from Beeler et al. [1994]. (a) Aging law (solid line) and Slip law (dashed line) fits with (a − b) fixed at
–0.0027. (b) Fits without any constraint on (a− b); the solid lines show Aging and the dashed lines Slip law
fits.

desirable properties in order for the Aging law to better fit the holds. However, in our inversions,

neither of these modifications qualitatively improved the Aging law fits to ∆µpeak and ∆µhold.

Surprisingly, at least one of these formulations (with a increasing logarithmically with decreasing

slip rate) actually improved the Slip law fit to the ∆µpeak and ∆µhold data. Additionally, this

Slip law fit adopted physically reasonable values for the extra parameters introduced due to the

rate dependence of a [Bhattacharya et al., 2017, Figure E1]. However, since our choice of these

modifications clearly was not exhaustive, this exercise does not rule out the possibility that some

other formulation of rate-dependent RSF parameters could address the lack of experimental support

for the Aging law.

4 Motivation for using ultrasonic monitoring in rock friction ex-
periments

One of the major impediments to the formulation of a set of rate-state friction constitutive rela-

tionships that agree well with the full range of laboratory friction experiments is the lack of direct

observational constraints on the contact-scale properties that contribute to ‘state’. While there

have been previous attempts at optically monitoring the evolution of micro-asperities bridging the

frictional interface in transparent plastic [Dieterich and Kilgore, 1994], Nagata et al. [2014] have

recently shown that ultrasonic measurements add independent information to our knowledge of
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Figure 8: (A): Frictional interface represented as a periodic array of cracks.(B): Typical stacked waveform
showing ultrasonic P- (mode converted) and S- transmitted amplitudes in our experiments on bare granite.

the mechanical properties of such an interface. For opaque interfaces like bare granite, ultrasonic

monitoring techniques seem especially informative when used to complement mechanical data de-

rived from friction experiments. Our experiments differ from such attempts in the past [Nagata

et al., 2008, 2012] in that we simultaneously measure the transmitted (mode converted) P- and

S-phases in our experiments to better probe the contact scale rheology. In particular, given the

traditional expectation that these asperities are in a state of plastic creep [Linker and Dieterich,

1992, Baumberger and Caroli, 2006, Dieterich and Kilgore, 1994], the central motivation behind

using both the P- and S- phases was that the sensitivity of shear waves to contact-scale deformation

under composite loading (normal stresses of a few MPa and a shear loading that drives slip) would

be different, and hence complementary, to that of compressional waves.

4.1 Motivation for measuring P- and S-transmissivities simultaneously

To understand the usefulness of simultaneously using the P- and S-transmitted phases, it is in-

structive to consider some approximate theories of wave propagation across an imperfect interface.

We consider a 1-D (imperfect) frictional interface modeled as a periodic, linear array of cracks (top

panels in Figure 8) being probed by ultrasonic waves of wavelength 2-3 orders of magnitude longer

than the linear dimension of the cracks. In this quasi-static limit (for such long wavelengths, the

effect of wave propagation across the array of fractures is well approximated by a static loading),

one can disregard any wave scattering due to the presence of cracks and treat the interface as a

displacement discontinuity (considering the interface as purely elastic) with its magnitude scaling

inversely with an interfacial stiffness (both normal and shear, under the assumption of continuity of

stresses across the interface) [Pyrak-Nolte et al., 1990]. Therefore, wave reflectivity and transmis-
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sivity across this ‘effective interface medium’ is a function of the interfacial stiffness; for an incident

wave of frequency ω, medium impedance Zα = ρvα and interfacial stiffness κα, the transmissivity

(|Tα|) is given by |T |α = 2(κα/Zα)/[4(κα/Zα)1/2 + ω2] where α denotes different choices between

P-, SH- and SV- phases [Pyrak-Nolte et al., 1990].

The interfacial stiffness of an array of cracks can be derived from an analysis of their response to

an applied static load. Baik and Thompson [1984] derived relationships between the interfacial

stiffness and the ratio of the separations between adjacent tips (W in Figure 8A) and centers (S

in Figure 8B) of a 1-D array of co-linear cracks and a 2-D array of co-planar circular asperities.

The mode I (P), mode II (SV) and mode III (SH) stiffnesses all obey these relationships to within

a multiplicative factor, and hence the corresponding percentage changes in |T | would be identical

for these purely elastic models.

However, in the limit W/S � 1, the contact stresses are expected to be large enough for the con-

tacts to undergo some plastic deformation. This would lead to a further reduction of the wave

transmissivities, by an amount that depends upon the ratio W/L, the amplitude and frequency of

the probing waves, and the material effective viscosity. Pyrak-Nolte et al. [1990] developed rela-

tionships for the transmission of waves across an interface with elastic contacts and a viscous fluid

filling the intervening gaps, by treating the interface jointly as a displacement and a velocity discon-

tinuity. In future work we will extend these results to the case where the contacts themselves are

viscoelastic. But based on current knowledge we can hypothesize different effective viscosities, and

hence different transmissivity changes, for different incoming waves (e.g., lesser effective viscosity

and greater transmissivity changes for S-waves polarized in the direction of slip than for P-waves or

S-waves polarized perpendicular to slip). Thus the combined use of P- and S-transmissivities should

provide new information on the contact rheology of the frictional interfaces in these experiments.

5 Experimental setup and observations

All our experiments were carried out on the biaxial apparatus in the Penn State Rock Mechanics

laboratory. The samples (cm-scale, initially bare granite blocks) were set up in a double-direct

shear geometry and two PZT shear-wave transducers, housed within steel blocks, were positioned

to transmit ultrasonic waves across the sliding interfaces. The normal stress was held constant at

4 MPa for all these experiments.

We carried out large velocity step increases and decreases (1-3 orders of magnitude) and slide-hold-

reslides (up to 5000s duration) at different slide/re-slide rates (Vs/r = 3, 30 and 100 µms−1). The

mechanical data were collected at 100 samples/second. The interface was probed with ultrasonic

shear waves of frequency 0.5 MHz with 1000 shots per second. This allowed a 10-waveform stack

corresponding to each mechanical data sample. The ultrasonic data were recorded at 25 MHz.

We recorded 8192 samples per transmitted wave allowing us to study both the mode-converted

P- and the S-phases on the waveforms (Figure 8B). For each experimental run, we also use the

P- and S-wave arrival times to calculate the evolution in P- and S- travel times with respect

to a pre-run stack. The travel times are expected to reflect the effects of dilation/compaction

of the interface accompanying the imposed changes in slip rate/shear stresses. Therefore, we
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Figure 9: Left to right: Shear stress and ultrasonic responses to 3×, 30×, and 300× velocity step increases
plotted versus time (in units of 1000s). The PTA and STA signals show similar characteristic changes and
consistent inter-relationships; for example, both PTA and STA decrease rapidly following the velocity step
but then recover somewhat in the long-term. The changes in P- and S-travel times are obtained through
waveform cross-correlation with a stacked template characterizing the pre- experimental run interface.

have four ultrasonic measurements corresponding to each sample of mechanical data, P- and S-

transmitted amplitudes (PTA and STA) and P- and S-differential travel times (∆Tr-time in µs).

It is possible that changes in stress in the bulk samples, away from the interface, contribute to

changes in transmitted amplitudes and travel times. However, experiments where we propagated

waves parallel to the sliding surface suggest that these changes are a small fraction of those for

waves propagating perpendicular to the surface. Additional tests of this sort will be conducted to

further evaluate this possibility.

Figures 9 and 10 show typical frictional and ultrasonic responses to large velocity step increases and

decreases. ∆Transmissivity in these figures is defined as the amplitude A of the transmitted signal

at time t minus the amplitude Ass during the prior steady state, normalized by the amplitude of

the stacked P- or S-wave template used to define travel time differences. In general both PTA and

STA decrease in response to a velocity increase and vice versa. Given the correlations between

real contact area fractions (RCA) and PTA/STA arising out of the models of interfaces considered

above, we interpret this trend as being due to a smaller RCA at higher sliding rates. The travel

times, on the other hand, increase with an increase in the slip rate, presumably due to the shear-

induced dilation of the interface.

Nagata et al. [2012] reported an instantaneous decrease (increase) in PTA across a step increase

(decrease) in shear stress, and used their observations to argue for a linear shear stress dependence

of log state (in addition to the classical slip and time dependence). In our velocity step tests, we

also observe that both PTA and STA decrease/increase over the same time scale and vary roughly

linearly with the ‘step’ increases/decreases in shear stress. However, note that the velocity step
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Figure 10: Variations in PTA and STA and P- and S-differential travel time delays across 2 and 3 orders
velocity step decreases.

increases in Figure 9 are all either marginally or fully unstable (as evidenced by a rapid drop in

stress post peak; also note the remarkable increase in PTA corresponding to the stress drop for

the 300× rate step increase) and, hence, the post-peak decrease in shear stress occurs faster and is

larger in magnitude than the pre-peak increase. The change in PTA and STA corresponding to this

larger and faster shear stress decrease is consistently smaller and slower than for the corresponding

increases. This observation does not seem consistent with a systematic linear scaling of PTA/STA

with rapid changes in shear stress. In fact it is unclear if PTA/STA is sensitive to shear stress

changes or to slip rate changes alone, e.g. the overshoots in PTA/STA in response to the velocity

decreases seem more consistent with the expected velocity undershoot following a rapid slip rate

decrease.

Figure 11 shows variations in the mechanical and ultrasonic measurements across holds of duration

15s, 300s and 1500s at Vs/r = 30µms−1. The broad features of the ultrasonic data and the inter-

relationships between the P- and S-measurements are identical to those observed for the large

velocity step decreases in Figure 10. Plotting all the holds at a given Vs/r on the same axes, it

can be seen that the measurements of STA and PTA are highly reproducible (Figure 12), down

to slight deviations of %∆Transmissivity from linearity with log time (Figure 12E). In terms of

percentage changes in transmissivity (A/Ass − 1), STA systematically increases more than PTA

during these holds (Figures 12A, C and E). This is suggestive of non linearly elastic behavior, and

seems consistent with our expectation that contacts subjected to shear waves polarized in the slip

direction will exhibit a larger degree of viscous deformation than contacts subjected to normal-

incident P waves. However, interpreting these results quantitatively, and making use of the change

on P- and S-wave travel times (Figures 12B, D and F), will require extending the analytical results

of Pyrak-Nolte et al. [1990] to an interface with elastic and viscous components in series rather than

in parallel, and additional experiments in which measurements are made on shear waves polarized
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Figure 11: Variations in PTA and STA and P- and S- travel time delays across 15s, 300s and 1500s
holds. Note that P- and S- measurement inter-relationships are identical to those seen for large velocity step
decreases in Figure 11.

both parallel and perpendicular to the slip direction. This work is currently underway.
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Figure 12: Percent change in PTA and STA and Vp/Vs ratio across all hold sequences in our experiments
(A), (B) Vslide = 3µms−1; (C), (D) Vslide = 30µms−1; and (E), (F) Vslide = 100µms−1. Dashed lines on the
right panels (Figs. 8A, C, E) depict % change in STA and solid lines show % change in PTA.
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